How the Brain Learns Mathematics. (전자도서, 2014) []
컨텐츠로 이동
How the Brain Learns Mathematics.
해당 아이템을 전자로 보기 위한 자원 선택하기

How the Brain Learns Mathematics.

저자: David A Sousa (Anthony)
출판사: Thousand Oaks : SAGE Publications, 2014.
판/형식:   전자도서 : 문서 : 영어모든 판과 형식 보기
To reach all your math students, use your brain-and theirs, too! This updated bestseller takes readers to the next level with new brain-friendly strategies backed by the latest research and even more ways to seamlessly incorporate what you learn about your students' developing minds into your math classroom. Discover the cognitive mechanisms for learning math, explore factors that contribute to learning  더 읽기…

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

온라인으로 문서 찾기

이 항목에 대한 링크

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중


장르/형태: Electronic books
추가적인 물리적 형식: Print version:
Sousa, David A. (Anthony).
How the Brain Learns Mathematics.
Thousand Oaks : SAGE Publications, ©2014
자료 유형: 문서, 인터넷 자료
문서 유형 인터넷 자원, 컴퓨터 파일
모든 저자 / 참여자: David A Sousa (Anthony)
ISBN: 9781483368467 1483368467
OCLC 번호: 958581587
설명: 1 online resource (257 pages)
내용: About the AuthorIntroduction Everyone Can Do Mathematics Why is Learning Mathematics So Hard? Response From Mathematics Educators About This Book Questions This Book Will Answer Chapter Contents Other Helpful Tools Assessing Your Current Knowledge of How We Learn Mathematics What's Coming?1. Developing Number Sense Babies Can Count What Is Number Sense? Animals Also Have Number Sense Why Do We Have Number Sense? Piaget and Number Sense Learning to Count Subitizing Counting How Language Affects Counting The Mental Number Line Expanded Notions of Number Sense Can We Teach Number Sense? Quantities to Words to Symbols Gardner's Logical/Mathematical Intelligence What's Coming? Reflections on Chapter 12. Learning to Calculate Development of Conceptual Structures Structures in Four-Year-Olds Structures in Six-Year-Olds Structures in Eight-Year-Olds Structures in Ten-Year-Olds Dealing With Multiplication Why Are Multiplication Tables Difficult to Learn? Multiplication and Memory Is the Way We Teach the Multiplication Tables Intuitive? The Impact of Language on Learning Multiplication Do the Multiplication Tables Help or Hinder? What's Coming? Reflections on Chapter 23. Reviewing the Elements of Learning Learning and Remembering Memory Systems Rehearsal Enhances Memory The Importance of Meaning How Will the Learning Be Stored? When Should New Learning Be Presented in a Lesson? Does Practice Make Perfect? Include Writing Activities Gender Differences in Mathematics Consider Learning Styles Consider Teaching Styles How Do You Think About Mathematics? What's Coming? Reflections on Chapter 34. Teaching Mathematics to the Preschool and Kindergarten Brain Should Preschoolers Learn Mathematics at All? Assessing Students' Number Sense Preschoolers' Social and Emotional Behavior What Mathematics Should Preschoolers Learn? Preschool and Kindergarten Instructional Suggestions General Guidelines Suggestions for Teaching Subitizing Learning to Count An Easier Counting System Teacher Talk Improves Number Knowledge Questioning Developing Sorting and Classifying Skills What's Coming? Reflections on Chapter 45. Teaching Mathematics to the Preadolescent Brain What Is the Preadolescent Brain? How Nature Influences the Growing Brain Environment Influences on the Young Brain Teaching for Meaning Using Cognitive Closure to Remember Meaning What Content Should We Be Teaching? Teaching Process Skills Does the Lesson Enhance Number Sense? Does the Lesson Deal With Estimation? From Memorization to Understanding Multiplication With Understanding Does the Lesson Develop Mathematical Reasoning? Using Practice Effectively With Young Students Graphic Organizers Don't Forget the Technology What's Coming? Reflections on Chapter 56. Teaching Mathematics to the Adolescent Brain What Is the Adolescent Brain? Overworking the Frontal Lobes The Search for Novelty Learning Styles and Mathematics Curriculum Qualitative Versus Quantitative Learning Styles Developing Mathematical Reasoning Instructional Choices in Mathematics Graphic Organizers Interpreting Word Problems Making Mathematics Meaningful to Teenagers What's Coming? Reflections on Chapter 67. Recognizing and Addressing Mathematics Difficulties Detecting Mathematics Difficulties Determining the Nature of the Problem Diagnostic Tools Environmental Factors Student Attitudes About Mathematics Fear of Mathematics (Math Anxiety) Neurological and Other Factors Dyscalculia Addressing Mathematics Difficulties Research Findings The Concrete-Pictorial-Abstract Approach Using Process Mnemonics Numeracy Intervention Process Students With Nonverbal Learning Disability Students With Both Mathematics and Reading Difficulties Other Considerations What's Coming? Reflections on Chapter 78. Putting It All Together: Planning Lessons in PreK-12 Mathematics What Is Mathematics? Questions to Ask When Planning Lessons Is the Lesson Memory-Compatible? Does the Lesson Include Cognitive Closure? Will the Primacy-Recency Effect Be Taken Into Account? What About Practice? What Writing Will Be Involved? Are Multiple Intelligences Being Addressed? Does the Lesson Provide for Differentiation? Simplified Instructional Model Conclusion Reflections on Chapter 8GlossaryReferencesResourcesIndex


To reach all your math students, use your brain - and theirs, too! This bestseller takes readers to the next level with new brain-friendly strategies backed by fresh research and even more ways to  더 읽기…


편집자의 리뷰

출판사 줄거리

"Teaching mathematics without having read How the Brain Learns Mathematics is like trying to master tennis without a coach. Sousa's book is a tour de force: It builds a solid bridge from cognitive 더 읽기…

사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…


첫번째 되기
요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.