Remote sensing for developing an operational monitoring scheme for the Sundarban Reserved Forest, Bangladesh [engl.]. (Book, 2006) [WorldCat.org]
skip to content
 Remote sensing for developing an operational monitoring... Preview this item
ClosePreview this item
Checking...

Remote sensing for developing an operational monitoring scheme for the Sundarban Reserved Forest, Bangladesh [engl.].

Author: Technische Universität Dresden, Geowissenschaften; Technische Universität Dresden, Institut für Photogrammetrie und Fernerkundung; Prof. Dr. Elmar Csaplovics; Prof. Dr. Michael Köhl; Prof. Dr. Bernhard Müller; Mariam Akhter
Publisher: Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden 2006-11-24
Dissertation: Thesis / Dissertation ETD.
Edition/Format:   Thesis/dissertation : Thesis/dissertation : eBook : English
Summary:
Sundarban Reserved Forest in Bangladesh is playing a significant role in local and national economy and is providing protection to the coastline as well as to the indigenous people. During the past decades and also in recent time this forest was heavily disturbed by human intervention in many aspects. As a consequence the resources of the forest are fragmenting, shrinking and declining, which in turn leads to an
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: DoctoralThesis
Material Type: Thesis/dissertation, Internet resource
Document Type: Internet Resource
All Authors / Contributors: Technische Universität Dresden, Geowissenschaften; Technische Universität Dresden, Institut für Photogrammetrie und Fernerkundung; Prof. Dr. Elmar Csaplovics; Prof. Dr. Michael Köhl; Prof. Dr. Bernhard Müller; Mariam Akhter
OCLC Number: 652259868
Language Note: English.
Notes: Application/pdf.
Other Titles: Entwicklung eines operationellen Überwachungsmodells für das Schutzgebiet des Sundarban Mangrovenwaldes in Bangladesh mit Hilfe von Fernerkundungsdaten

Abstract:

Sundarban Reserved Forest in Bangladesh is playing a significant role in local and national economy and is providing protection to the coastline as well as to the indigenous people. During the past decades and also in recent time this forest was heavily disturbed by human intervention in many aspects. As a consequence the resources of the forest are fragmenting, shrinking and declining, which in turn leads to an increasing failure of satisfying increasing demands both at local and national levels. Therefore accurate and continuously updated spatial information is needed for optimising forest management and environmental planning on both levels to support the fulfilment of urgent needs of sustainability of the forest. Considering the specific topography and the poor accessibility of the forest versus the task of collecting information, remote sensing is an attractive, if not the only means of obtaining sound full-coverage spatial information on forest cover of Sundarban. This research used medium resolution Landsat ETM data of November 2000 and Landsat TM data of January 1989 to assess and monitor the forest for 1. Identification of the operational tools for mapping and monitoring the forest as well as on the examination of the reliability of the application of multitemporal satellite remote sensing data for building spatial databases on forest cover in Sundarban. 2. Based on the existing management plan of the forest as well as the spectral properties of Landsat ETM imagery a level III classification system was developed. 3. This classification strategy was tested by applying several methods to achieve the classification result with the highest accuracy and thus to build the most reliable methodology for mapping forest cover in Sundarban. 4. Forest cover change was assessed for the period of eleven years. Significant changes have been observed due to illegal removal of trees from the forest although a governmental moratorium on banning timber extraction exists since.

Das Schutzgebiet des Sundarban Mangrovenwaldes in Bangladesh spielt eine entscheidende Rolle in Hinsicht auf nationale und lokale sozio-ökonomische und sozio-ökologische Aspekte. Das Waldgebiet stabilisiert nicht nur die Küstenlinie, sondern schützt auch die Bevölkerung vor den Einflüssen von Flutkatastrophen. Durch menschlichen Einfluss wurde die Region während der letzten Jahrzehnte mehr und mehr unmittelbar gestört. Der Rückgang des Ertrags an Ressourcen aus dem Wald führte zu wachsender Unzufriedenheit in der von diesen Nutzungs-möglichkeiten abhängigen Bevölkerung. Um eine Optimierung des Waldmanagements durchführen zu können, werden kontinuierliche und genaue raumbezogene Daten benötigt. Betrachtet man die spezifische Topographie und die schlechte Zugänglichkeit der Waldgebiete, so bietet die Fernerkundung eine attraktive Möglichkeit, raumbezogene Informationen für die großen Flächen des Sundurban Mangrovenwaldes zu erfassen. Zur Analyse und Überwachung der Waldgebiete wurden zwei Satellitenbild-Datensätze mit mittlerer Auflösung verwendet, und zwar Landsat ETM Daten aus dem Jahre 2000 (November) sowie Landsat TM Daten aus dem Jahre 1989 (Januar). Die zentralen Aktivitäten im Rahmen der Bearbeitung der Dissertation beziehen sich auf 1. die Identifikation der notwendigen Werkzeuge für eine erfolgreiche Kartierung und Überwachung der Waldgebiete sowie Untersuchung der Zuverlässigkeit multi-temporaler Fernerkundungsdaten für den Aufbau einer Datenbasis für die Kartierung von Waldbedeckungsarten im Untersuchungsgebiet des Sunderban Mangroven-waldes, 2. die Entwicklung eines Klassifikationssystems nach dem USGS-Schlüssel (Auflösungsebene III) auf Grundlage des existierenden Managementplanes und der spektralen Qualität der Landsat ETM Satellitenbilddaten, 3. den Test der Klassifikationsstrategie durch Adaption unterschiedlicher Methoden und Optimierung in bezug auf Erzielung eines Ergebnisses in maximal erreichbarer Genauigkeit als Ausgangspunkt für den Aufbau einer.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

All user tags (2)

View most popular tags as: tag list | tag cloud

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.